7,531 research outputs found

    Phase diagrams of XXZ model on depleted square lattice

    Full text link
    Using quantum Monte Carlo (QMC) simulations and a mean field (MF) theory, we investigate the spin-1/2 XXZ model with nearest neighbor interactions on a periodic depleted square lattice. In particular, we present results for 1/4 depleted lattice in an applied magnetic field and investigate the effect of depletion on the ground state. The ground state phase diagram is found to include an antiferromagnetic (AF) phase of magnetization mz=±1/6m_{z}=\pm 1/6 and an in-plane ferromagnetic (FM) phase with finite spin stiffness. The agreement between the QMC simulations and the mean field theory based on resonating trimers suggests the AF phase and in-plane FM phase can be interpreted as a Mott insulator and superfluid of trimer states respectively. While the thermal transitions of the in-plane FM phase are well described by the Kosterlitz-Thouless transition, the quantum phase transition from the AF phase to in-plane FM phase undergo a direct second order insulator-superfluid transition upon increasing magnetic field.Comment: 7 pages, 8 figures. Revised version, accepted by PRB

    Theory of the tunneling spectroscopy of ferromagnetic superconductors

    Full text link
    We study tunneling conductance in normal metal / insulator / ferromagnetic superconductor junctions. The tunneling spectra show a clear difference between spin-singlet s-wave pairing, spin-triplet opposite spin pairing and spin-triplet equal spin pairing: These pairings exhibit, respectively, gap struture, double peak structure and zero bias peak in the spectra. The obtained result may serve as a tool for determining the pairing symmetry of ferromagnetic superconductors.Comment: 4 pages, 2 figure

    Andreev reflection at half-metal-superconductor interfaces with non-uniform magnetization

    Full text link
    Andreev reflection at the interface between a half-metallic ferromagnet and a spin-singlet superconductor is possible only if it is accompanied by a spin flip. Here we calculate the Andreev reflection amplitudes for the case that the spin flip originates from a spatially non-uniform magnetization direction in the half metal. We calculate both the microscopic Andreev reflection amplitude for a single reflection event and an effective Andreev reflection amplitude describing the effect of multiple Andreev reflections in a ballistic thin film geometry. It is shown that the angle and energy dependence of the Andreev reflection amplitude strongly depends on the orientation of the gradient of the magnetization with respect to the interface. Establishing a connection between the scattering approach employed here and earlier work that employs the quasiclassical formalism, we connect the symmetry properties of the Andreev reflection amplitudes to the symmetry properties of the anomalous Green function in the half metal.Comment: 13 pages, 4 figure

    A few comments on the high-energy behavior of string scattering amplitudes in warped spacetimes

    Full text link
    The high-energy behavior of string scattering in warped spacetimes is studied to all orders in perturbation theory. If one assumes that the theory is finite, the amplitudes exactly fall as powers of momentum.Comment: 6 page

    Non-divergent pseudo-potential treatment of spin-polarized fermions under 1D and 3D harmonic confinement

    Full text link
    Atom-atom scattering of bosonic one-dimensional (1D) atoms has been modeled successfully using a zero-range delta-function potential, while that of bosonic 3D atoms has been modeled successfully using Fermi-Huang's regularized s-wave pseudo-potential. Here, we derive the eigenenergies of two spin-polarized 1D fermions under external harmonic confinement interacting through a zero-range potential, which only acts on odd-parity wave functions, analytically. We also present a divergent-free zero-range potential treatment of two spin-polarized 3D fermions under harmonic confinement. Our pseudo-potential treatments are verified through numerical calculations for short-range model potentials.Comment: 9 pages, 4 figures (subm. to PRA on 03/15/2004

    Possible role of 3He impurities in solid 4He

    Full text link
    We use a quantum lattice gas model to describe essential aspects of the motion of 4He atoms and of 3He impurities in solid 4He. This study suggests that 3He impurities bind to defects and promote 4He atoms to interstitial sites which can turn the bosonic quantum disordered crystal into a metastable supersolid. It is suggested that defects and interstitial atoms are produced during the solid 4He nucleation process where the role of 3He impurities (in addition to the cooling rate) is known to be important even at very small (1 ppm) impurity concentration. It is also proposed that such defects can form a glass phase during the 4He solid growth by rapid cooling.Comment: 4 two-column Revtex pages, 4 figures. Europhysics Letters (in Press

    Evolution of a bosonic mode across the superconducting dome in the high-Tc cuprate Pr(2-x)Ce(x)CuO(4-{\delta})

    Full text link
    We report a detailed spectroscopic study of the electron doped cuprate superconductor Pr(2-x)Ce(x)CuO(4-{\delta}) using point contact junctions for x=0.125(underdoped), x=0.15(optimally doped) and x=0.17(overdoped). From our conductance measurements we are able to identify bosonic resonances for each doping. These excitations disappear above the critical temperature, and above the critical magnetic field. We find that the energy of the bosonic excitations decreases with doping, which excludes lattice vibrations as the paring glue. We conclude that the bosonic mediator for these cuprates is more likely to be spin excitations.Comment: 4 page

    Density of states in d-wave superconductors of finite size

    Get PDF
    We consider the effect of the finite size in the ab-plane on the surface density of states (DoS) in clean d-wave superconductors. In the bulk, the DoS is gapless along the nodal directions, while the presence of a surface leads to formation of another type of the low-energy states, the midgap states with zero energy. We demonstrate that finiteness of the superconductor in one of dimensions provides the energy gap for all directions of quasiparticle motion except for \theta=45 degrees (\theta is the angle between the trajectory and the surface normal); then the angle-averaged DoS behaves linearly at small energies. This result is valid unless the crystal is 0- or 45-oriented (\alpha \ne 0 or 45 degrees, where \alpha is the angle between the a-axis and the surface normal). In the special case of \alpha=0, the spectrum is gapped for all trajectories \theta; the angle-averaged DoS is also gapped. In the special case of \alpha=45, the spectrum is gapless for all trajectories \theta; the angle-averaged DoS is then large at low energies. In all the cases, the angle-resolved DoS consists of energy bands that are formed similarly to the Kronig-Penney model. The analytical results are confirmed by a self-consistent numerical calculation.Comment: 9 pages (including 5 EPS figures), REVTeX

    Re-entrant localization of single particle transport in disordered Andreev wires

    Full text link
    We study effects of disorder on the low energy single particle transport in a normal wire surrounded by a superconductor. We show that the heat conductance includes the Andreev diffusion decreasing with increase in the mean free path ℓ\ell and the diffusive drift produced by a small particle-hole asymmetry, which increases with increasing ℓ\ell. The conductance thus has a minimum as a function of ℓ\ell which leads to a peculiar re-entrant localization as a function of the mean free path.Comment: 4 pages, 2 figure
    • 

    corecore